2022 年 2022 巻 FIN-029 号 p. 39-46
This paper targets to predict overnight stock movement by taking contextualized news and stock information into account, using the Pre-trained Language Model (PLM) that was recently popular in Natural Language Processing (NLP) field. We proposed a model in which, given a piece of news and a stock code, the model can predict its overnight stock movement by utilizing combined news-stock embedding. Such embedding consists of (1) the contextualized embedding that contains the semantics of such a piece of news produced by a language model trained on a set of news and its paired stock movement. (2) The contextualized embedding is produced by a PLM trained on the information of stocks. Moreover, we introduce news augmentation on multiple pieces of news for the input and study its effect, respectively.