人工知能学会第二種研究会資料
Online ISSN : 2436-5556
文脈内自己学習による医用画像セグメンテーション
髙屋 英知山本 新之助
著者情報
研究報告書・技術報告書 フリー

2024 年 2024 巻 AIMED-014 号 p. 02-

詳細
抄録

Annotation of medical images is crucial for assessing cancer treatment outcomes and defining radiotherapy targets. It also plays a key role in medical AI research as a preprocessing step for machine learning models. However, the heavy workload of medical professionals limits their capacity for extensive annotation tasks. To address this, we propose a method for segmenting sequential medical images with minimal annotation effort. Building on UniverSeg, which enables few-shot segmentation without additional training, our approach iteratively enhances segmentation by incorporating each inference result into the support set. Experiments on the HVSMR dataset show that our method outperforms baseline UniverSeg.

著者関連情報
© 2024 著作者
前の記事 次の記事
feedback
Top