人工知能学会第二種研究会資料
Online ISSN : 2436-5556
大規模言語モデルを用いた金融テキスト二値分類タスクの定義文生成とチューニング手法の提案
高野 海斗中川 慧藤本 悠吾
著者情報
研究報告書・技術報告書 フリー

2024 年 2024 巻 FIN-033 号 p. 155-162

詳細
抄録

Text classification using large language models (LLMs) often has low interpretability and is hard to adjust manually. On the other hand, zero-shot learning, which uses definition statements in LLMs for classification, is more interpretable but creating good definition statements is a challenging task. Therfore, we propose a method to automatically generate definition statements using LLMs to improve classification accuracy and interpretability in (binary) text classification. The proposed method first randomly splits the labeled data and generates (initial) definition statements based on sampled data. Then, it classifies the labeled data using these statements and updates them by inputting misclassified data back into LLMs, repeating this process to improve the definition statements. Experiments with real-world texts show that the proposed method performs well compared to fine-tuned BERT model and LLM few-shot learning and creates appropriate definition sentences.

著者関連情報
© 2024 著作者
前の記事 次の記事
feedback
Top