人工知能学会第二種研究会資料
Online ISSN : 2436-5556
地震観測データからの地震波検測
加藤 慎也
著者情報
研究報告書・技術報告書 フリー

2024 年 2024 巻 GeoSciAI-001 号 p. 01-

詳細
抄録

We developed a fine-tuned deep learning model using SegPhase to pick seismic wave travel times from data observed by MeSO-net. The SegPhase model was fine-tuned using MeSO-net data to adapt its pre-trained capabilities to the limited dataset of 522 events and 13 observation points. Evaluation showed that fine-tuning significantly reduced evaluation function value compared to the pre-trained model. All P-waves were detected at a threshold of 0.1, with similarly high performance for S-waves.

著者関連情報
© 2024 著作者
次の記事
feedback
Top