人工知能学会第二種研究会資料
Online ISSN : 2436-5556
深層学習による人工衛星熱数学モデルのパラメータ推論
渡邉 由羽
著者情報
研究報告書・技術報告書 フリー

2024 年 2024 巻 SMSHM-002 号 p. 03-

詳細
抄録

In spacecraft thermal design, constructing an accurate thermal mathematical model is crucial for reliably predicting the temperatures of various components. However, current practices involve manually adjusting model parameters based on thermal vacuum test results, which is both time-consuming and costly. This study proposes the use of simulation-based inference (SBI) for estimating the parameters. SBI offers the flexibility to handle complex and nonlinear models. Additionally, it provides posterior distributions for the estimated parameters, enabling a quantitative assessment of uncertainties and confidence intervals. To validate the effectiveness of this approach, numerical experiments are conducted using a small satellite model under simplified conditions.

著者関連情報
© 2024 著作者
前の記事 次の記事
feedback
Top