人工知能学会第二種研究会資料
Online ISSN : 2436-5556
学習期間が異なる株価予測機械学習モデルのアンサンブル学習による投資戦略の構築
西村 征馬
著者情報
研究報告書・技術報告書 フリー

2025 年 2025 巻 FIN-035 号 p. 125-129

詳細
抄録

The application of machine learning method to securitiesreturn prediction has been actively researched. However, areview of previous studies reveals that the learning periodvaries greatly depending on the report. Also, in practice,determining the learning period is often a challenge. Inthis study, we propose a new method to solve this problemby using an ensemble of models that differ only in theirtraining windows. To demonstrate the effectiveness of theproposed method, we compared test loss and stock priceprediction capabilities of machine learning models withvarious learning periods and their ensemble models.

著者関連情報
© 2025 著作者
前の記事 次の記事
feedback
Top