人工知能学会研究会資料 言語・音声理解と対話処理研究会
Online ISSN : 2436-4576
Print ISSN : 0918-5682
99回 (2023/12)
会議情報

親和的な対話システムの実現にむけた非接触呼吸推定技術の開発
小尾 賢生船越 孝太郎
著者情報
会議録・要旨集 フリー

p. 07-12

詳細
抄録

Respiration is closely related to speech, so respiratory information is useful for improving multimodal spoken dialogue systems from various perspectives. A machine-learning task is presented for multimodal spoken dialogue systems to improve the compatibility of the systems and promote smooth interaction with them. This task consists of two subtasks: waveform amplitude estimation and waveform gradient estimation. A dataset consisting of respiratory data for 30 participants was created for this task, and a strong baseline method based on 3DCNN-ConvLSTM was evaluated on the dataset. Finally, our task was shown to be effective in predicting user voice activity after 200 ms. These results suggest that our task is effective for improving multimodal spoken dialogue systems.

著者関連情報
© 2023 人工知能学会
前の記事 次の記事
feedback
Top