JSAP Review
Online ISSN : 2437-0061
Research Report
Free-carrier localization and electron–phonon interaction in transparent conductive oxide films
Tetsuya Yamamoto Rajasekaran PalaniHisashi KitamiHisao Makino
Author information
JOURNAL OPEN ACCESS

2024 Volume 2024 Article ID: 240404

Details
Abstract

We present the size effects on the electrical and optical properties of high Hall mobility transparent conductive oxide (TCO) films, where the size effects were characterized by the disorder parameter. First, we deposited amorphous W-doped In2O3 (IWO) films with thicknesses ranging from 5 to 10 nm on glass substrates using reactive plasma deposition with dc-arc discharge. Then, we obtained polycrystalline IWO films by solid-phase crystallization, and elucidated the dominant factors determining the states of the carrier electrons and their carrier transport of the films. Decreasing the thickness from 10 to 5 nm, while retaining the carrier concentration, leading to a 2D-like films with induced a lattice disorder, resulting in reduced Hall mobility. A theoretically obtained electron–phonon coupling factor, which is found to be governed by the Debye temperature, carrier concentration, and disorder parameter, provided the cause of the above carrier transport behavior. In addition, based on the above electron–phonon coupling factor, we propose theoretical predictions of materials design to achieve high carrier transport ultra-thin TCO films.

Content from these authors
© 2024 The Author(s)

Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
https://creativecommons.org/licenses/by/4.0/
Previous article Next article
feedback
Top