抄録
Many innovative surgical devices based on novel technologies and techniques have been studied to offer secure diagnosis and less invasive treatment with fewer complications. Before these devices are used clinically, their safety must be validated using various methods to simulate the clinical situation with reasonable accuracy. In this paper, we focused on mechanical intervention and surveyed various preclinical studies, which assessed the collateral damage accompanied with the use of these devices. This review paper is especially intended for a reader who (1) develops or researches on surgical devices, (2) intends to implement or commercialize innovative surgical devices or medical technologies to the society, and (3) wants to identify safety validation methods that are an index for surgical devices approval systematically. All studies were categorized according to their types of intervention (grasping, stretching, needle, and shock wave) so that the readers can efficiently find similar or related assessment methods. In these studies, the intervention was applied to a computer model and/or animal model in vivo and/or ex vivo. The damage was evaluated by one or more sub-assessments including tissue function and tissue structure as well as cellular functional and cellular structural assessments such as histological observations. Some of these studies attempted to clarify effective intensity and distribution of intervention, whose collateral damage was acceptably small. Therefore, such procedures or devices were proved to be effective and safe. Finally, considering all studies, we have tried to comment on the future challenges in this field.