土木学会論文集A2(応用力学)
Online ISSN : 2185-4661
ISSN-L : 2185-4661
応用力学論文集Vol.16(特集)
3次元スカラー波動問題に対する陰的Runge-Kutta法を用いた演算子積分時間領域高速多重極境界要素法
丸山 泰蔵斎藤 隆泰廣瀬 壮一
著者情報
ジャーナル フリー

2013 年 69 巻 2 号 p. I_175-I_185

詳細
抄録
This paper presents an implicit Runge-Kutta (IRK) based convolution quadrature time-domain fast multipole boundary element method (CQ-FMBEM). Application of a convolution quadrature method (CQM) to a time-domain boundary element method (BEM), which is called CQ-BEM, can improve numerical stability of time-stepping procedure. In recent researches, the IRK based CQ-BEM showed better performance than the conventional linear multistep based one regarding accuracy. However, the IRK based CQ-BEM requires more computational time and memory. Therefore, in this paper, the fast multipole method (FMM) is applied to the IRK based CQ-BEM for 3-D scalar wave propagation problems. The formulation of the IRK based CQ-BEM and the application of the FMM are described. The accuracy and computational efficiency of the proposal method are compared with the linear multistep based CQ-FMBEM by solving some numerical examples.
著者関連情報
© 2013 公益社団法人 土木学会
前の記事 次の記事
feedback
Top