土木学会論文集A2(応用力学)
Online ISSN : 2185-4661
ISSN-L : 2185-4661
応用力学論文集Vol.16(特集)
連結グラフ上での非保存型移流拡散方程式に対する適合有限要素法
吉岡 秀和金城 信彦宇波 耕一藤原 正幸
著者情報
ジャーナル フリー

2013 年 69 巻 2 号 p. I_59-I_70

詳細
抄録
Numerical resolution of advection-diffusion equations on connected graphs requires careful treatment in implementing internal boundary conditions at junctions. This study proposes a simple conforming Petrov-Galerkin finite element method with compact stencil, referred to as CPGFEM2, which effectively solves the non-conservative advection-diffusion equations on connected graphs. The CPGFEM2 utilizes the fitting technique in the spatial discretization so that the junctions are consistently handled as implicit internal boundary conditions. A selective lumping algorithm in conjunction with the local θ-scheme is applied in the temporal discretization. The CPGFEM2 is verified through several test problems. The CPGFEM2 is successfully applied to numerical analysis of conservative solute transport in an existing agricultural drainage system, showing its applicability to real problems.
著者関連情報
© 2013 公益社団法人 土木学会
前の記事 次の記事
feedback
Top