土木学会論文集B1(水工学)
Online ISSN : 2185-467X
ISSN-L : 2185-467X
水工学論文集第56巻
群知能最適化手法を用いた分布型流出モデルのパラメーター同定
小槻 峻司田中 賢治小尻 利治浜口 俊雄
著者情報
ジャーナル フリー

2012 年 68 巻 4 号 p. I_523-I_528

詳細
抄録
In this paper, the particle swarm optimization (PSO) is applied into automatic parameter calibration process of a distributed runoff model. As distributed runoff models require long simulation time compared with general optimization problems, the number of particles and repeat computation times should be selected property. We conducted sensitivity experiments for the number of particles and found that the PSO has to be applied in following conditions: i) to set the number of particles more than 100 in the case of calibrating about five parameters, ii) to conduct repeat computations about 25 times. Analyzed river discharge using identified parameters shows good agreement with the observed one.
著者関連情報
© 2012 公益社団法人 土木学会
前の記事 次の記事
feedback
Top