日本計算工学会論文集
Online ISSN : 1347-8826
ISSN-L : 1344-9443
外部Helmholtz問題で生じる線型方程式に対する前処理つきCOCG法の応用
柿原 正伸小山 大介藤野 清次
著者情報
ジャーナル フリー

2005 年 2005 巻 p. 20050022

詳細
抄録
Numerical methods for Finite Element Method (FEM) analysis of the exterior Helmholtz problem with local and Dirichlet-to-Neumann (DtN) boundary conditions are reviewed. Efficient preconditionings of Conjugate Orthogonal Conjugate Gradient (COCG) method for the resulting complex-symmetric (non-Hermitian) matrix systems are discussed including Incomplete Cholesky (IC) and Complex Shifted IC factorization with dropping tolerance. We evaluate the convergence of preconditioned COCG methods under varying wave numbers of Helmholtz equation and consider also on effectiveness of these preconditionings through eigenvalue analysis.
著者関連情報
© 2005 The Japan Society For Computational Engineering and Science
前の記事 次の記事
feedback
Top