2017 年 43 巻 4 号 p. 124-132
In this study, the prediction of the progression of transverse cracking in laminates, including 90° plies, was discussed. A refined stress field (RSF) model was formulated that takes into account the thermal residual strain for plies, including transverse cracks, and the energy release rate associated with transverse cracking was calculated using this RSF model. For comparison, the energy release rate based on a continuum damage mechanics (CDM) model was also formulated. Next, the prediction for the progression of transverse cracking in carbon fiber-reinforced plastic (CFRP) cross-ply laminates, including 90° plies, based on both stress and energy criteria was implemented using Monte Carlo methods. The results showed that the RSF and CDM models proposed in this paper can predict the experiment results for the relationship between the transverse crack density and ply strain in 90° plies. The models presented in this paper can potentially be applied to any arbitrary laminate that includes 90° plies.