日本計算機統計学会シンポジウム論文集
Online ISSN : 2189-583X
Print ISSN : 2189-5813
ISSN-L : 2189-5813
会議情報
A Clustering Method for Distribution Valued Dissimilarities(Session 2b)
Yusuke MatsuiMasahiro MizutaHiroyuki MinamiYuriko Komiya
著者情報
会議録・要旨集 フリー

p. 101-102

詳細
抄録
This paper discusses a symbolic clustering method for distribution valued dissimilarities. Symbolic Data Analysis (SDA) is a new approach for data analysis proposed by Diday in 1980s. Especially, a clustering method for symbolic data is called "Symbolic clustering". There are a lot of researches including Hierarchical clustering by Bock (2001) and Chavent & Lechecallier (2002), but there are not so many researches dealing with distribution valued dissimilarities. This paper proposes a new method for symbolic clustering using distribution valued dissimilarities.
著者関連情報
© 2011 日本計算機統計学会
前の記事 次の記事
feedback
Top