日本計算機統計学会シンポジウム論文集
Online ISSN : 2189-583X
Print ISSN : 2189-5813
ISSN-L : 2189-5813
会議情報
Tuning parameter selection for L_1 type regularization(Session 2b)
Kei HiroseShohei TateishiSadanori Konishi
著者情報
会議録・要旨集 フリー

p. 93-96

詳細
抄録
In sparse regression modeling via regularization such as the lasso, elastic net and bridge regression, it is important to select appropriate values of tuning parameters including regularization parameters. The choice of tuning parameters can be viewed as a model selection and evaluation problem. Mallows' C_p type criterion may be used to choose the tuning parameters, for which the concept of degrees of freedom plays a key role. In the present paper, we propose an efficient algorithm which computes the degrees of freedom sequentially by extending the generalized path seeking algorithm. Monte Carlo simulations demonstrate that our methodology performs well in various situations.
著者関連情報
© 2011 日本計算機統計学会
前の記事 次の記事
feedback
Top