日本太陽エネルギー学会講演論文集
Online ISSN : 2758-478X
2023年度(令和5年度)研究発表会
会議情報

セッション:A5 太陽光発電(3)
41 クラスタ故障を含むストリングの異常を検出するロジスティック回帰を用いた故障検出の実機検証
*石倉 規雄佐々木 響希藤井 雅之桶 真一郎南野 育夫濱田 俊之齋木 翼
著者情報
会議録・要旨集 フリー

p. 145-146

詳細
抄録

In recent years, with the spread of photovoltaic systems (PVSs) are becoming deterioration and failures that lead to accidents and fires are increasing, and reducing the cost of maintenance and inspections to prevent these problems is an issue. In this study, we propose a machine learning method using logistic regression analysis, which is a type of multivariate analysis and has a low computational load, with the aim of simplifying maintenance and inspection. In this presentation, we will report that we have verified the effectiveness of the proposed method by learning using measured data from a site of PVS.

著者関連情報
© 一般社団法人日本太陽エネルギー学会
前の記事 次の記事
feedback
Top