日本太陽エネルギー学会講演論文集
Online ISSN : 2758-478X
2023年度(令和5年度)研究発表会
会議情報

セッション:A2 日射量・PV 発電量予測(2)
8 複数予報データを用いた翌日日射予報の大外し低減手法の検討
*高松 尚宏中島 虹大竹 秀明大関 崇山口 浩司
著者情報
会議録・要旨集 フリー

p. 25-28

詳細
抄録

In power systems where large amounts of photovoltaic power generation have been installed, operational planning is based on next-day solar radiation forecasts. In order to realize efficient and stable power system operation, advanced next-day solar radiation forecasting is necessary, and forecasts must not only have average accuracy but also be able to control the risk of rare large outages. In this study, a multiple solar radiation forecast model using ensemble forecast data was constructed by machine learning, and a forecast model that can both improve the average accuracy and suppress the risk of large over-estimation was investigated.

著者関連情報
© 一般社団法人日本太陽エネルギー学会
前の記事 次の記事
feedback
Top