JSIAM Letters
Online ISSN : 1883-0617
Print ISSN : 1883-0609
ISSN-L : 1883-0617
Persistent homology analysis with nonnegative matrix factorization for 3D voxel data of iron ore sinters
Ippei Obayashi Masao Kimura
著者情報
ジャーナル フリー

2022 年 14 巻 p. 151-154

詳細
抄録

This paper proposes a data analysis method using persistent homology and nonnegative matrix factorization. A concatenated persistence image technique is used to extract coexisting structures from the persistence diagrams of different dimensions hidden behind the data. To demonstrate the potential of our method, we apply the method to 3D voxel data of iron ore sinters obtained by X-ray computed tomography. The analysis successfully captures the coexistence structures in these iron ore sinters.

著者関連情報
© 2022, The Japan Society for Industrial and Applied Mathematics
前の記事
feedback
Top