日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
2次元実同次二次変換における発散収束境界の入れ子構造を判別する不変式の導出
吉川 毅伊達 惇
著者情報
ジャーナル フリー

2000 年 10 巻 4 号 p. 283-294

詳細
抄録
In this paper, we derive the invariants for discriminating the existence of nesting in the shape of the divergence-convergence boundary of two-dimensional real homogeneous quadratic transformations. Nesting in this context is a special case of self-similarity in the general sense. To explain the properties of this shape, we analyze nesting in the portrait of the behavior of directions in the transformation process. For two-dimensional real homogeneous guadratic transformations, Date and Iri [1] gave the invariant series. We found an additional invariant for discriminating the nesting.
著者関連情報
© 2000 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top