日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
幾何アルゴリズム加速のための混合演算に関する研究
神田 毅杉原 厚吉森本 康彦
著者情報
ジャーナル フリー

2004 年 14 巻 2 号 p. 117-150

詳細
抄録
A widely used strategy to decrease the execution time of robust geometric algorithms using multiprecision integer arithmetic is the hybrid use of integer and floating-point arithmetic. In this strategy, multiprecision integer arithmetic is avoided if the sign decision in floating-point arithmetic used in advance is regarded as sufficiently reliable. It is important for this strategy to estimate the upper bound of the error calculated in floating-point arithmetic. However, the method of the estimation is not unique. The more tightly the error is estimated, the more frequently multiprecision integer arithmetic is avoided. However, a tight upper bound requires high computational cost. This paper investigates how the suitable estimation varies as the type and the scale of inputs vary. Experimental consideration is done using the incremental method for constructing the Voronoi diagram as an example of the geometric algorithm.
著者関連情報
© 2004 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top