日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
2段階アルゴリズムによるSVMの解法
力徳 正輝平井 広志室田 一雄
著者情報
ジャーナル フリー

2004 年 14 巻 4 号 p. 221-234

詳細
抄録
A two-stage algorithm is proposed for the learning phase of support vector machines (SVM). The algorithm is a combination of the Sequential Minimal Optimization (SMO) and the projected quasi Newton method. Use of the quasi Newton method in the neighborhood of optimal solutions results in a substantial improvement upon SMO in the number of iterations, and hence in numerical accuracy of the solution. Computational results on the UCI Adult and Web data set show that the two-stage algorithm performs comparably with SMO in usual parameter settings, but outperforms SMO for large C values and small tolerances.
著者関連情報
© 2004 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top