日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
グレブナー基底による幾何定理の代数的証明の効率について
森継 修一荒井 千里
著者情報
ジャーナル フリー

2007 年 17 巻 2 号 p. 183-193

詳細
抄録
We show experimental results for proving Euclidean geometry theorems by Grobner bases method. In 1988, Chou Shang-Ching proved 512 theorems by Wu's method, and reported that 35 of them remained unsolvable by Grobner bases method. In this paper, we tried to prove these 35 theorems by Grobner basis method using three kinds of computer algebra systems : Reduce, Maple and Risa/Asir. As a result, we succeeded in proving 26 theorems but have found that the rest 9 theorems are essentially difficult to compute Grobner vases. We show the table of timing data and discuss several devices to complete the proof.
著者関連情報
© 2007 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top