日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
1次元熱拡散方程式の最小固有値を求める閉じた計算式
新井 和夫丸井 智敬丸山 智
著者情報
ジャーナル フリー

1992 年 2 巻 3 号 p. 169-175

詳細
抄録
This note presents a practical approximation method for computing the minimum eigenvalue for a transcendental equation derived from the heat equation with a convective boundary condition. The transcendental equation is approximated by a finite continued fraction equation, which is a quadratic equation. Its solution(the minimum eigenvalue ) is obtained in a closed form depending explicitly on the Biot number. The method is faster than the conventional Newton method and the error is within 0.3%, a level that is quite satisfactory for practical use.
著者関連情報
© 1992 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top