日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
Durand-Kerner法の効率的な初期値の簡単な設定法
小澤 一文
著者情報
ジャーナル フリー

1993 年 3 巻 4 号 p. 451-464

詳細
抄録
We propose a simple procedure for setting the efficient starting values of the Durand-Kerner iteration, which finds all zeros α_i(i = 1, ・・・, n) of a polynomial of degree n simultaneously. In our new procedure, the starting values are located on the circle centered at β with radius γ_<gm>where β = 1/nΣ^^n__<i=1>α_i, and γ_<gm> is the geometric mean of the deviations |α_i - β|. The computational cost for this procedure is extremely cheap compared with that for Aberth's procedure. Moreover, the various numerical examples show that our new method reduces the number of iterations tremendously over any other ones, particularly when some of the deviations |α_i - β| are large.
著者関連情報
© 1993 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top