日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
差分法によるn次元ラプラス方程式の離散化とその理論固有値解析
竹内 敏己藤野 清次
著者情報
ジャーナル フリー

1995 年 5 巻 1 号 p. 9-26

詳細
抄録
In this paper we study theoretically on some mathematical properties of the matrix of the linear system of equations which stems from discretization of n-dimensional Laplace equation by finite difference approximations. The mathematical properties, i.e., the maximum and minimum absolute eigenvalues, the eigenvectors and the condition numbers of the coefficient matrix A and the Jacobi matrix B of the iterative method are estimated. The discretization by the finite differences in n-dimensions is made using the nearest and skewed neighboring grid points. The effectiveness of the variants of the finite differences is shown throughout this study.
著者関連情報
© 1995 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top