日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
多項式の符号判定のための剰余演算の利用法と計算幾何学への応用
今井 敏行
著者情報
ジャーナル フリー

1995 年 5 巻 2 号 p. 131-138

詳細
抄録
Not a few geometric algorithms determine signs of values of polynomials whose variables are input data to decide the structure of geometric objects. Such algorithms require double or triple long integer arithmetics such as addition, subtraction and multiplication even if all the input data are integers of the single length. In the standard method, multiple long integer arithmetic takes much time, especially in multiplication. It has been known that modular arithmetic reduces time. Modular arithmetic, however, has to use multiple long integer arithmetics to get back the values themselves from their residues and it takes the same or more time compared to the standard method. In this paper, we show some techniques to determine the sign of a double or triple long integer directly from the result of modular arithmetic method, and show the performances of these techniques applied to some geometric problems.
著者関連情報
© 1995 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top