日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
ランダム対称結合神経回路網の神経細胞モデル依存特性
伊達 章
著者情報
ジャーナル フリー

1997 年 7 巻 2 号 p. 97-106

詳細
抄録
A large number of equilibrium states or fixed points is in a randomly and symmetrically connected neural network. Recently it has been shown that the maximum number which can be realized depend on the model of the single neuron. Here we show some network properites of the neuronal model dependence which include the maximum number of equibrium states and the activity of these states. Furthermore, the invariant activity in each model is also derived, where the activity does not depend on the statistical parameters designated by the probability distribution of connection weights between neurons and a threshold of neurons.
著者関連情報
© 1997 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top