日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
ホモトピー法を適用した実数非対称行列の固有値問題
鈴木 智博
著者情報
ジャーナル フリー

1997 年 7 巻 4 号 p. 353-362

詳細
抄録
By applying the homotopy method, the eigenvalue problem for real nonsymmetric matrices reduces to the problem of tracing algebraic curves which are called eigenpaths. Since a real nonsymmetric metrices generally has complex eigenvalues, the eigenpath transitions from the real space to the complex space or vice versa. This bifurcation phenomenon occurs at the point which is called a bifurcation point. The purpose of this paper is to clear that the relation between the bifurcation phenomenon and the multiplicity of eigenvalues. The common bifurcation phenomenon occurs at the point which has an eigenvalue such that algebraic multiplicity is 2 and geometric multiplicity is 1.
著者関連情報
© 1997 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top