日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
アフィン神経力学系の一意表現
木村 昌弘中野 良平
著者情報
ジャーナル フリー

1999 年 9 巻 2 号 p. 37-50

詳細
抄録
This paper considers learning a dynamical system using a recurrent neural network (RNN) with hidden units. Such an RNN does not produce a dynamical system on the visible state space unless a mapping from the visible state space to the hidden state space is successfully specified. We propose an affine neural dynamical system (A-NDS) as a dynamical system that an RNN can actually produce on the visible state space to approximate a target dynamical system. An n-dimensional A-NDS is parametrically represented by a suitable pair of an RNN with n visible units and r hidden units, and an affine mapping from the n-dimensional space to the r-dimensional space. However, this parametric representation has redundancy. We construct a unique parametric representation of an A-NDS with the aim of building efficient learning algorithms of a dynamical system using an RNN.
著者関連情報
© 1999 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top