Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311
Regular Paper
Root Colonization by Trichoderma atroviride Triggers Induced Systemic Resistance Primarily Independent of the Chitin-mediated Signaling Pathway in Arabidopsis
Ayae SakaiHisako YamagataKeigo NaitoMai YoshiokaTakaya TominagaShinsuke IfukuHironori Kaminaka
著者情報
ジャーナル オープンアクセス HTML
電子付録

2024 年 39 巻 4 号 論文ID: ME24038

詳細
抄録

Beneficial root endophytic fungi induce systemic responses, growth promotion, and induced systemic resistance (ISR) in colonized host plants. The soil application of chitin, a main component of fungal cell walls, also systemically induces disease resistance. Therefore, chitin recognition and its downstream signaling pathway mediate ISR triggered by beneficial fungi colonizing the root. The present study compared systemic disease resistance and transcriptional responses induced by Trichoderma, a representative beneficial root endophytic fungus, and chitin in Arabidopsis. Significant plant growth promotion was observed under root colonization by the three beneficial fungi tested: Trichoderma atroviride, Serendipita indica, and S. vermifera. Only T. atroviride and S. indica triggered ISR against the necrotrophic fungal pathogen Alternaria brassicicola. Induced systemic resistance triggered by T. atroviride was compromised in the chitin-receptor mutant, whereas systemic resistance caused by the soil application of chitin was not. A transcriptome ana­lysis demonstrated that chitin-regulated genes were mostly shared with those regulated by T. atroviride; however, many of the latter were specific. The commonly enriched gene ontologies for these genes indicated that the T. atroviride inoculation and chitin application systemically controlled similar transcriptional responses, mainly associated with cell wall functions. Therefore, Trichoderma may trigger ISR primarily independent of the chitin-mediated signaling pathway; however, chitin and Trichoderma may systemically induce similar cellular functions aboveground.

著者関連情報
© 2024 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles.

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
https://creativecommons.org/licenses/by/4.0/
前の記事 次の記事
feedback
Top