抄録
The pressure fluctuations and the radial fluid forces induced by rotor-stator interaction in a centrifugal pump were measured and their relationship was investigated. Experiments were done for various guide vanes, flow rates, and rotating speeds. It was demonstrated that both the blade pressure fluctuations and the volute static pressures are non-uniform circumferentially (not axisymmetric) under off-design operating conditions and that the two have a strong relationship. At high flow rates, the interaction-induced blade pressure fluctuations are large in areas where the volute static pressure is low. The propagating directions of the pressure fluctuations, the whirling directions of the radial fluid forces acting on the impeller and the dominant frequency components of both the fluctuations and the fluid forces are discussed. When measuring the fluid forces in the rotating frame, other frequency components, in addition to those related to the products of the number of guide vanes and the rotating frequency, may occur due to the circumferential unevenness of the pressure fluctuations.