計算力学講演会講演論文集
Online ISSN : 2424-2799
セッションID: 807
会議情報
807 Gaussian Karnelの半径と適応的スケーリング(OS8. 計算力学と最適化(2),オーガナイズドセッション講演)
北山 哲士荒川 雅生山崎 光悦
著者情報
会議録・要旨集 フリー

詳細
抄録
In this paper, we propose a new simple estimate for the width of the Gaussian kernel, based on the estimate proposed by Nakayama. First, the simple estimate for width proposed by Nakayama is analyzed, and then some sufficient conditions will be described. According to these sufficient conditions, a new simple estimate for the width of the Gaussian kernel is proposed. Considering the equivalence between some machine learning techniques, it is expected that the proposed estimate of the width is applicable to wide range of machine learning techniques employing the Gaussian kernel. Through numerical examples, the validity of the proposed estimate of the width is examined.
著者関連情報
© 2010 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top