計算力学講演会講演論文集
Online ISSN : 2424-2799
セッションID: 808
会議情報
808 ロボット足先の最適着地点列に基づく歩行のニューラルネットワーク学習(OS8. 計算力学と最適化(2),オーガナイズドセッション講演)
河盛 崇彦河村 英後藤 雄志中村 正行
著者情報
会議録・要旨集 フリー

詳細
抄録
The purpose of this research is generation of stepping points for quadrupedal walking robot in obstacle environment. It is difficult to prepare the optimum stepping points for various configurations and shapes of obstacle in advance. We make the neural networks to learn the sets of obstacle environment and its optimum stepping points. We use optimum stepping points generated by genetic algorithm as supervised data. The available stepping points for the obstacle environment by the learned neural network. Stepping points for the same obstacle environment are generated by three different methods. The methods are genetic algorithm, neural network and random transformation based on optimum stepping points. From the comparing fitness of three cases it is fined that the stepping points generated by the neural network is close to the optimum stepping points.
著者関連情報
© 2010 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top