計算力学講演会講演論文集
Online ISSN : 2424-2799
セッションID: 267
会議情報

拡張ラプラス変換型機械学習による自動運転車とドライバーの協調制御に関する一考察
*安部 博枝ルイス ディアゴ南畑 淳史萩原 一郎
著者情報
会議録・要旨集 認証あり

詳細
抄録

While proceeding with the examination of Level 3, we came to think that the concept of cooperative control is effective not only for Level 3 but also for all levels. In Level 3, when the system cannot stand, the driver receives Request to Intervene(RtI) from the system. This will be only possible if the system itself understands why it requests RtI to the driver and the system can the driver what to do. To achieve this situation, It is important for the machine learning to be short calculation time and to get smarter with training. Extended Laplace transform type machine learning HNN(Holographic neural network) is the one that meats these requirements.

著者関連情報
© 2021 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top