計算力学講演会講演論文集
Online ISSN : 2424-2799
セッションID: 11-16
会議情報

連続分布転位論とホロノミーによるキンク帯先端の部分回位のフランクベクトルの解析
*岡 大貴垂水 竜一小林 舜典
著者情報
会議録・要旨集 認証あり

詳細
抄録

This study conducts the modeling and numerical analysis of kink deformation on the basis of continuous field theory of dislocation and differential geometry. In particular, we aim to evaluate the existence and nature of disclination which is expected to be formed at the tip of kink band. Plastic deformation due to dislocation is obtained by numerically solving the Cartan first structure equation. This result yields a Riemann - Cartan manifold which equips Riemannian metric and Levi – Civita connection. By introducing the holonomy, i.e., the integration of curvature on a closed interval, we evaluate the magnitude of Frank vector at the kink tip. The result shows quantitative agreement with those expected from the classical dislocation theory.

著者関連情報
© 2022 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top