計算力学講演会講演論文集
Online ISSN : 2424-2799
セッションID: 16-15
会議情報

少量データにおける畳み込みニューラルネットワークを用いた基板そり量変位の予測
*塔筋 弘貴和田 義孝
著者情報
会議録・要旨集 認証あり

詳細
抄録

A convolutional neural network, which reproduce a function by data, was used to predict the amount of warp distortion of a four-layer circuit board in a reflow soldering process. The data used for training are material properties such as Young's modulus, board thickness, and residual copper content as input data, while the warpage strain data to be predicted is the amount of warp of the circuit board obtained from the measurement. Since several distortion data to be predicted was insufficient to be used for training, a newly proposed data augmentation method used to increase a total amount of data. Proposed data augmentation is evaluated through the result of the predictions and discussed.

著者関連情報
© 2022 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top