Dynamics & Design Conference
Online ISSN : 2424-2993
セッションID: 733
会議情報
733 故障検出法としての主成分分析とサポートベクターマシンの比較
田村 雅之
著者情報
会議録・要旨集 フリー

詳細
抄録
Fault detection methods based on empirical models such as principal component analysis (PCA) or support vector machines (SVM) are compared. As an example of realistic plants, absorption chiller system is chosen for comparisons. Several datasets whose distribution show different degrees of nonlinearity are generated based on an empirical model which describes heat exchanger efficiency. Sample numbers for model training is crucial on fault detection ability of models, especially for SVM. Nonlinear distribution of observed plant data deteriorates fault detection sensitivity of linear PCA model, whereas it does not affect SVM model.
著者関連情報
© 2007 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top