Dynamics & Design Conference
Online ISSN : 2424-2993
セッションID: 105
会議情報
105 ウェーブレット自己相関関数を用いた不規則信号の時系列解析
田村 晋司上田 泰士木村 康治
著者情報
会議録・要旨集 フリー

詳細
抄録
Wavelet autocorrelation function is proposed in this paper. After Cooley and Tukey developed the algorithm of fast fourier transform, the power spectral density is used in various field to obtain the frequency components of stationary signals. Autocorrelation function is derived as inverse fourier transform of the power spectral density. In the autocorrelation function, the noise components of target signal are reduced, although the periodic components still remain. In this study, autocorrelation function of wavelet transform is proposed for time series analysis of nonstationary signal, and its ability for noise suppression is investigated.
著者関連情報
© 2008 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top