主催: 一般社団法人 日本機械学会
会議名: Dynamics and Design Conference 2016
開催日: 2016/08/23 - 2016/08/26
An inertia force resulting from response of a structure excited by ground motion due to an earthquake excites the structure and generates a seismic force on the structure. The handling of seismic forces has been being discussed in terms of how the seismic force on a piping controls the deformation of the piping, load-controlled or displacement-controlled. A seismic design code for nuclear facilities applied in Japan qualifies this kind of seismic forces as primary stress components which shall be limited to prevent any plastic collapse, on the assumption that the seismic force mainly consists of load-controlled loads and the deformation due to earthquakes is caused by the loads. The authors studied about a condition of plastic collapse occurrence by the relationship between response acceleration and displacement of SDOF system. And it was represented in a previous paper that plastic collapse hardly occurred to soft structure due to an inertia force generated from response acceleration tended to oppose a response displacement. Several simulations for elastic-perfectly-plastic Single mass cantilever model under a combination of alternating load and static load are performed and evaluated. In the model response by the combination load, variations of force components are examined.