設計工学・システム部門講演会講演論文集
Online ISSN : 2424-3078
セッションID: 2404
会議情報

製品情報のテキストマイニングによる設計開発・保守のナレッジマネジメント
(Graph RAGを用いた自動車故障の知識マネジメントシステムの構築)
*小島 湧太坂地 泰紀中村 格士坂田 大晃関 和也勅使河原 優山下 雅己青山 和浩
著者情報
会議録・要旨集 認証あり

詳細
抄録

In the automotive industry, there is a growing demand for handing down the skills of failure analysis these days. However, failure events are phenomena that occur in a chain reaction, making them difficult for beginners to understand. While a Knowledge Graph (KG) that can structure information is effective in describing failure events, understanding KGs themselves is not easy. On the other hand, there is growing anticipation for the use of Graph RAG, a type of Retrieval-Augmented Generation (RAG) technology that utilizes large language models (LLMs) and KGs for knowledge management. However, when using Graph RAG with an existing knowledge graph for automobile failures, several issues arise because it adopts Semantic Parsing-based Method. This study proposes an optimized Graph RAG pipeline for existing knowledge graphs by adopting Information Retrieval-based Method. By using an original Q&A dataset, the ROUGE f1 score of the sentences output by the proposed method showed an average improvement of 157.9% compared to the existing method. This indicates the effectiveness of the proposed method for failure analysis of automobiles.

著者関連情報
© 2024 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top