流体工学部門講演会講演論文集
Online ISSN : 2424-2896
セッションID: OS1-7
会議情報

深層学習による円管内乱流の脈動制御のための渦構造予測モデル
*山口 僚平光石 暁彦志村 敬彬岩本 薫村田 章
著者情報
会議録・要旨集 フリー

詳細
抄録

We performed direct numerical simulation of pulsating controlled flow for drag reduction and predicted time evolution of vortical structure distribution using deep learning. The datasets for the deep learning is the distribution of vortical structure defined by second invariant of velocity gradient tensor in circumferential cross sections. There are the correlation between the time variation of the friction drag and the ratio of the vortical structures occupying in the sections. We predicted the time variation of the ratio by predicting the time variation of the vortical structures using convolutional neural networks with convolutional long short-term memory (ConvLSTM). It was revealed that the model can predict the periodic variation of the ratio.

著者関連情報
© 2018 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top