主催: The Japan Society of Mechanical Engineers
会議名: 第9回 21世紀における先端生産工学・技術に関する国際会議 (LEM21)
開催日: 2017/11/13 - 2017/11/17
In response to the demand for high accuracy and high resolution of angular positioning and movement of CNC machine tools, the demand for rotary encoder systems has also increased for the detection of ultra-precise angular position and movement. Authors had developed a new principle of self-calibration with multiple detecting head which enables detection of the error components of higher order with the less number of detecting heads. In this study, the angular accuracy of the rotary encoder for servo control inside a machine tool was examined with reference to the self-calibration of the rotary encoder using the proposed method. Measured data of the accuracy of that were also utilized to generate the calibration data of the rotary encoder, and the rotary encoder was calibrated with the calibration data. The measured accuracy showed a resolution of 1/236. It was confirmed that the angular positioning accuracy was improved because of the calibration.