抄録
The purpose of this study is to generate the gait of a two-legged robot to avoid obstacles. It is expected that two-legged robot can avoid obstacle more smoothly in the same way that animal and human adjust stride naturally to step over obstacles. Stepping points are determined optimally under the condition of maximizing walking speed and/or minimizing energy for walking. The gait generation problem is reduced to a combinatorial optimization problem solved by using genetic algorithm. Orbits of toes and hip between stepping points are generated by means of parametric modeling. The stable walking patterns are obtained under the condition of the maximizing walking speed and the minimizing energy consumption.