年次大会
Online ISSN : 2424-2667
ISSN-L : 2424-2667
セッションID: S0540101
会議情報
S0540101 渦度方程式に対する時間・空間運動エネルギ保存差分法によって作られる非線形連立方程式の解法について([S054-01]渦流れのダイナミクス(1))
出川 智啓
著者情報
会議録・要旨集 フリー

詳細
抄録
In this study, we aim to construct a finite difference method, which spatially and temporally conserves the kinetic energy, for the vorticity equation on the two-dimensional flow field. In order to achieve the temporal kinetic energy conservation, a space-time staggered grid is used for the discretization of governing equations and implicit mid-point rule is applied to the time integration. The method is applied to simulate a two-dimensional viscous flow, known as a lid-driven cavity flow, under the non-periodic boundary condition. The solution methods for the Krylov iteration in the Jacobian-Free Newton-Krylov method are investigated. The results show that the Jacobian-free Newton-Krylov method with SOR method is much faster than the method with the GMRES method for the Krylov iteration.
著者関連情報
© 2014 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top