年次大会
Online ISSN : 2424-2667
ISSN-L : 2424-2667
セッションID: J012-08
会議情報

物理方程式を考慮したグラフニューラルネットワークによる流体予測技術の開発
*木佐貫 祥一郎中野 陽平松村 直也杉浦 卓也
著者情報
会議録・要旨集 認証あり

詳細
抄録

In the development of aerodynamic-related products in the automotive manufacturing industry, evaluations must be fast and highly accurate with minimal deviation from the physical equations. On the other hand, Computational Fluid Dynamics and existing AI technologies had general problem with long processing time or low reliability of solution.

Therefore, in this study, we developed high-fidelity fluid prediction system based on Physics-Informed Graph Neural Network (PI-GNN), and design optimization system by using Multi-Objective Bayesian Optimization. We incorporated fluid equations into the loss function for consideration of physical equations when developing surrogate models. As a result, it was confirmed that the system enables highly accurate inference of fluid phenomena and fast optimization of the aerodynamic-related products.

著者関連情報
© 2024 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top