In Micro Electro Mechanical Systems (MEMS) technology, a lift-off process with sputter deposition is one general patterning method for amorphous alloy thick film structure. However, a thickness of the structure is not uniform because sputtered particles are hindered by side a wall of the lift-off layer. In this paper, a new patterning method of amorphous alloy thick film structure with uniform thickness was proposed. Moreover, this patterning method was defined as "Reversed lift-off process". In reversed lift-off process, convex parts with the desired structure shape is formed on a top of a substrate. Thick film structure is deposited by the sputter deposition on the top surface of convex parts. A thickness of the structure is uniform because there is nothing which hinders sputtered particles in contrast to a conventional lift-off process. As a practical experiment of reversed lift-off process, we successfully fabricated Cu-Zr-Ti metallic glass thick film structure which has uniform film thickness, rectangular cross-sectional shape, and noncrystalline in a different width of the structure. Moreover, it was confirmed that reversed lift-off process is suitable for the fabrication of metallic glass thick film structure in the comparison with the conventional lift-off process.