生産加工・工作機械部門講演会 : 生産と加工に関する学術講演会
Online ISSN : 2424-3094
会議情報
419 ニューラルネットワークによる砥石作業面状態の識別
細川 晃上田 隆司織田 正人佐久間 邦郎
著者情報
会議録・要旨集 フリー

p. 217-218

詳細
抄録
In this study, a new technique of in-process characterization of the grinding wheel surface is proposed. Some reference topographies of the wheel surface are formed by different dressing conditions. and the condition of the wheel surface is discriminated where the dynamic fre-quency spectrum signals of grinding sound and/or vibration are analyzed by a neural network technique. In the case of conventional vitrified-bonded alumina wheel, both grinding sound and vibration can be identified under the optimum network configuration in such that learning rate is 0.003 and number of hidden layer is 160. Accordingly this system can recognize the differ-ence of the wheel surface in a good degree of accuracy insofar as the micro-topography of abrasive grains are relatively widely changed.
著者関連情報
© 2000 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top