動力・エネルギー技術の最前線講演論文集 : シンポジウム
Online ISSN : 2424-2950
セッションID: D111
会議情報

機械学習によるSOFC微細構造変化の予測
*シチョンシコ アンナ小松 洋介山岸 鈴奈鹿園 直毅
著者情報
会議録・要旨集 認証あり

詳細
抄録

Predicting the time evolutions of electrode microstructures of solid oxide fuel cells (SOFCs) is a challenging task as the underlying mechanisms are not fully understood and the available experimental data are scarce. The present study proposes a machine learning method for predicting microstructural changes in the SOFC electrodes. A conditional generative adversarial network with an unsupervised image-to-image translation (UNIT) architecture is incorporated to predict the reduction process of NiO-based SOFC anode. UNIT successfully predicts the microstructural change during reduction for the new microstructures and can predict temperature dependence despite the limited number of training data.

著者関連情報
© 2022 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top