ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2A1-F12
会議情報
2A1-F12 ニューラルネットワークを用いたフレキシブル直角座標ロボットマニピュレータの軌道計画
阿部 晶
著者情報
会議録・要旨集 フリー

詳細
抄録
This paper presents a trajectory planning for a flexible Cartesian robot manipulator in a point-to-point motion. In order to obtain a mathematical model properly, the parameters of the equation of motion are determined from an identification experiment. Neural networks are employed to generate the desired base position, and then a particle swarm optimization (PSO) is used for the learning algorithm, in which the sum of the displacement of the manipulator is adopted as the objective function. We show that the residual vibrations of the manipulator can be suppressed as a result of the minimum displacement requirement. The effectiveness of the proposed approach is verified by a comparison of numerical results and experimental ones.
著者関連情報
© 2009 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top